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What is ‘a’ parasite?

A genetic strain? …ATTGCGAATATCCTCATAAGGCAC…

An individual?

Fig. 5. Kinetics of antigen expression and the effectiveness of RT-CTL. Kinetics of virus production by CD4+ TCL2H7 cells
infected with recombinant HIV-12.1EN (a, b), or HIV-12.1RN (c, d). Extracellular p24 levels were quantified in cultures initiated with
3×105 CD4+ T cells, containing a number of infected cells proportional to approximately 17 ID50, together with no (open circles),
3×105 (a and c; closed circles) or 3×104 (b and d; closed circles) RT-CTL. The CD8/CD4 cell ratio in cultures containing RT-CTL
(triangles) was assessed by flow cytometry. (e-h) Dynamics of life, 7AAD–, CD4+ T cells during the culture period in absence (open
diamonds) or presence (closed diamonds) of RT-CTL; (e-h correspond to the same cultures as a-d). Data are presented as event
count (×10–3) acquired in 90 s from 200- l samples. Similar results were obtained in three independent experiments.

RT-CTL, even at low density (Fig. 5c, d). No changes
were observed in the primary sequence of the recombi-
nant nef genes of the virus recovered at the end of the
experiment (data not shown).

2.6 Effect of CTL on CD4+ T cells in the presence
of HIV

In the same experiment we followed the number of viable
CD4+ cells. In absence of CTL, the number of CD4+ cells
declined concurrently with the increasing virus levels,
indicating that cell death was related to virus production
(Fig. 5e–h). In presence of RT-CTL, CD4+ cell death
occurred later and paralleled the delay in the HIV-12.1EN

production (Fig. 5e, f). The enhanced control of HIV-12.1RN

reproduction by the RT-CTL was associated with contin-
ued proliferation of the CD4+ cells (Fig. 5g, h), similarly to
uninfected CD4+ cell cultures (data not shown). Thus,
expression of the RT-epitope as part of the nef gene not
only rendered the RT-CTL more effective in inhibiting
virus reproduction, it also enabled them to protect the
CD4+ cell population from virus-related cell death.

3 Discussion

3.1 Different effectiveness of CTL directed
against early or late HIV proteins

This study provides evidence for the contribution of early
target cell recognition to the capacity of HIV-1-specific
CTL to control HIV reproduction in CD4+ T cell popula-
tions. Previously reported data indicated that CTL
directed against the early Rev protein prevented slightly
more virus production during a single infection cycle
than CTL directed against the late RT protein; 97% and

92% reduction by 48 h after infection, respectively
[26]. Here, residual progeny virus could start successive
infection cycles and the small difference was shown to
increase markedly over time. After 10 days, the Rev-
specific CTL had prevented at least 2 log10 more virus
production than a similar number of RT-specific CTL,
which was not compensated for by tenfold more effector
cells. These results are in line with the notion that if CTL
are to be antivirally active, they have to lyse infected cells
within a given time window [27], and that small differ-
ences in their capacity to reduce virus production can
have dramatic effects on overall virus control due to the
capacity of virus populations to expand exponentially
[11, 28].
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A clone?

A cluster of infections?

An infection?

…ATTGCGAAAATCCTCATAAGGCAC…
…ATTGTGAATATCCTCATAAGGCAC…
…ATTGCGAATATCCTCACAAGGCAC…

A quasispecies?
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Evolutionary Theory 
in a Nutshell

‘Fitness is maximised’

OK, let’s take that for granted.

But by whom or what ?

 



Levels of organisation

population
competition, predation, epidemiology, social interactions

individual
birth, death, development, behaviour

within-individual
physiology, learning, infection, immune response

ecosystem
biodiversity, nutrient cycles



Evolutionary Theory

Fitness = Lifetime Reproductive Success

Life-history theory, epidemiology, even population 
genetics…



Levels of organisation

population
competition, predation, epidemiology, social interactions

individual
birth, death, development, behaviour

within-individual
physiology, infection, immune response

ecosystem
biodiversity, nutrient cycles







An anthill is an individual

http://homepage.mac.com/ldr/albums/summer2001/images/rudsmaasan2.jpg

(almost)



A lichen is an association

http://en.wikipedia.org/wiki/Image:Hyella_caespitosa_hypae.jpg



within-individual
physiology, infection, immune response

Levels of organisation

population
competition, predation, epidemiology, social interactions

individual
birth, death, development, behaviour

ecosystem
biodiversity, nutrient cycles



Model for the origin of life

• interactions between simple molecules

• can persist where single species cannot

• susceptible to ‘parasites’

The Hypercycle



Hypercycle

Species 1

Species 2

Species 3

Species n

…



Exploited Hypercycle

Species 1

Species 2

Species 3

Species n

…

Parasite
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Plate 1A Plate 1B Plate 1C 

Plate 3A Plate 3B Plate 3C 

Plate 4A Plate 48 Plate 5 

Spatialised hypercyle

Boerlijst & Hogeweg (1991) simulated a probabilistic 
cellular automaton to study spatial structure 
generated by hypercycles
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Exploited hypercyle

and then added parasites…







Spatial Hypercycles

Boerlijst & Hogeweg’s (1991) results

• Tend to form rotating spirals

• Parasites swept outward

• Selection on rotation speed
– favouring higher mortality

22 M. C. Boerlijsr and P. Hogeweg /Spiral wat’e structure in pre-biotic el,olution 
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Plate 3A Plate 3B Plate 3C 
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Spatial evolution

Selection at the level of the spiral

• Rotation speed selected trait

But:

• Rapidly rotating spirals ‘fly apart’

• Evolution towards criticality
– Rand, Keeling & Howard 1995
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van Ballegooijen & Boerlijst 2004



Viscous populations

Mutants create clusters

Clusters unit of adaptation 

– unit of selection is a confusing term

Mathematical characterisation

• Correlation dynamics
– Matsuda et al. (1992), Van Baalen & Rand (1998), Van Baalen (2000), 

Ferrière & Le Galliard (2001), Lion & van Baalen (2007)



Bookkeeping

σ
rσ(1)

σ1

rσ1

σ12
rσ2σ

rσ(2) (2)

(1)
2

Morris (1997)



Events

death:

birth:

movement:

growth, infection, long-range dispersal, cooperation, spite, …

predation:



Contact epidemics

• Empty sites (o), healthy (S) and infected (I) 
individuals

• Full correlation dynamics model tracks 
oo, So, SS, Io, II, and SI pairs

• Depends on ‘higher moments’

• SI pairs give insight in contact rate

• Not equal to product of S and I !



  



  



Altruism

• Empty sites o, altruistic A and selfish S 
individuals

• Full correlation dynamics model tracks 
oo, So, SS, Ao, AS, and AA pairs



Correlation
dynamics

 &
Pair 

approximation
techniques 

Analytical Methods

Van Baalen & Rand (1998)



Adaptive Dynamics

• Empty sites o, altruistic A and selfish S 
individuals

• Full correlation dynamics model tracks 
oo, So, SS, Ao, AS, and AA pairs

• Resident system: (oo, So, SS)

• Mutant invader: (Ao, AS, AA)

M. VAN BAALEN AND D. A. RAND636

of the type qh=ij, which give the probability that a
neighbour of the i in an ij pair is occupied by an h.
(For example, the probability that an oS becomes an
AS pair because an A-neighbour of the pair
reproduces will be proportional to bAqA =oS). From
elementary probability theory we have,

qh=ij =
phij

pij
(5)

which implies that qh=ij depends on the frequency of hij
triplets. In fact, the di}erential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
we have to estimate or approximate the distribution
of these larger configurations in terms of pair
frequencies. For conditional probabilities of the type
qh=ij the most straightforward strategy is to adopt the
so-called pair approximation, i.e. to assume that

qh=yj 1 qh=i (6)

i.e. the probability to find an h next to the i is assumed
not to be a}ected by i’s other neighbour j (Matsuda
et al., 1992).

This assumption may introduce a significant error.
Consider, for example, qA=SA. Under the pair
approximation assumption, this would be approxi-
mated by qA=S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
‘‘see’’ altruists). However, qA=SA is the probability that
the non-altruist has a second altruistic neighbour.
This implies that the S in question is likely to be in
a region where A is locally abundant, and that qA=SA

therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following di}erential equations:

dpS

dt
=[(b0 +BpA)po ⌧ d]pS

dpA

dt
=[(b0 +BpA ⌧C)po ⌧ d]pA (7)

where po =1⌧ pS ⌧ pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion

5.1. INVASION DYNAMICS

In order to determine under what conditions
altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is su.cient to verify that the resident has a positive
equilibrium which is the case if b0 is su.ciently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not a}ect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three di}erential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
di}erent way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =G
F

f

pAo

pAS

pAA

G
J

j
and qA =G

F

f

qo=A

qS=A

qA=A

G
J

j
(10)

and M(qA) is a 3� 3 matrix that is fully given in
Appendix B.



Invasion of altruist mutant

Dynamics of mutant given by sets of equations

• Matrix formalism

• Fitness: dominant Lyapunov exponent

• Unit of selection: corresponding eigenvector
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of the type qh�ij, which give the probability that a
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(For example, the probability that an oS becomes an
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elementary probability theory we have,
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pij
(5)
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triplets. In fact, the di⇣erential equations will depend
on the frequencies of more complex configurations, as
birth rates depend on the entire configuration
surrounding reproducing individuals.

Hence if we are to describe the dynamics of pairs
in terms of pair frequencies (i.e. ‘‘close’’ the system)
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not to be a⇣ected by i’s other neighbour j (Matsuda
et al., 1992).
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Consider, for example, qA�SA. Under the pair
approximation assumption, this would be approxi-
mated by qA�S, a quantity that is very small when the
altruists are rare (on average, the non-altruists do not
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This implies that the S in question is likely to be in
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therefore does not approximate zero. The ‘‘standard’’
pair approximation thus ignores an important aspect
of spatial structure. In the discussion we will present
preliminary results using an improved approximation.

4. Mean-field Dynamics

Before analysing the spatial dynamics, it is
instructive to consider the equivalent non-spatial
(‘‘mean-field’’) model. When the migration rates mA

and mS become very large, the populations become
‘‘well-mixed’’ and the dynamics are governed by the
following di⇣erential equations:

dpS

dt
=[(b0 +BpA)po ✏ d]pS

dpA

dt
=[(b0 +BpA ✏C)po ✏ d]pA (7)

where po =1✏ pS ✏ pA.

From this system it can be deduced immediately
that (1) the non-altruists always have a higher birth
rate as they do not pay the cost of altruism and
therefore (2), the altruists can never invade the
equilibrium population of the non-altruist. This, of
course, is nothing but a restating of the classical
dilemma of the evolution of altruism. Thus, if in the
pair approximation model the altruists can invade, we
know that it is a consequence of spatial structure.

5. Invasion
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In order to determine under what conditions

altruists can invade a system dominated by the
non-altruists, we proceed exactly as we would for
well-mixed populations. First, we work out the
dynamics of the system in the absence of altruists, and
then we derive the ‘‘invasion exponent’’ (Metz et al.,
1992; Rand et al., 1994) for a small population of
altruists.

In the absence of altruists, the non-altruists will
settle at a stable equilibrium pS = poS + pSS (see
Matsuda et al., 1992 for its derivation). At this point,
it is su�cient to verify that the resident has a positive
equilibrium which is the case if b0 is su�ciently larger
than dS (Matsuda et al., 1992).

If the altruists are (globally) rare (i.e. pAo, pAS and
pAA are all very small) they do not a⇣ect global
dynamics of the resident non-altruists. As a
consequence the invasion dynamics of the altruists are
governed by three di⇣erential equations, for pAo, pAS

and pAA. Matsuda et al. (1992) express these in the
form

dpij

dt
=Mijpij (8)

in which an expression Mij is called the ‘‘Malthusian’’
of pij. Here, however, we represent the system in a
di⇣erent way (though formally equivalent), that is, in
matrix form:

dpA

dt
=M(qA)pA (9)

where

pA =⌅
⇤

⇧

pAo

pAS

pAA

⌅
�

⇥
and qA =⌅

⇤

⇧

qo�A

qS�A

qA�A

⌅
�

⇥
(10)

and M(qA) is a 34 3 matrix that is fully given in
Appendix B.
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Characteristic cluster
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds o� is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3. ⇥✏� �✓⇣⌘ ✓��⌘↵�⇣⌃✓⇥⇣↵ 
Although simulations of PCA models are excellent

for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4. ⌦⇣⇥ ��� ⇣ ⌥⇣�⇤↵⇧� �↵�⇧⌅✓⇥⇣↵ �
Following Metz et al. (1992) and Rand et al. (1994)

we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple di�erential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation su⌘ces. These di�erential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coe⌘cient of relatedness’’

F⇣�. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).



Viscous populations

Traits of the cluster determine invasion success

Close link with Hamilton’s inclusive fitness

Invasion condition

 

Coefficient of relatedness r ecological variable
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open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4. ⌦⇣⇥ ��� ⇣ ⌥⇣�⇤↵⇧� �↵�⇧⌅✓⇥⇣↵ �
Following Metz et al. (1992) and Rand et al. (1994)

we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple di�erential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation su⌘ces. These di�erential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coe⌘cient of relatedness’’

F⇣�. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).

individuals. As we have seen, this hypothesis was challenged
by early patch-structured models, on the basis that
population viscosity also increases competition between
relatives, which can impede the spread of altruism.
However, stochastic individual-based models have shown
that, under certain conditions, the balance can be easily
tipped in favour of altruism.

Evolution of cooperation in viscous populations can be
interpreted using three main arguments: kin selection, group
selection (clusters of altruists do better) or network
reciprocity. We argue that these three arguments are in a
large measure equivalent. This can be shown either with a
top–down approach, by showing that the results of
evolutionary graph theory can be retrieved as special cases
of a general kin selection model (Rousset 2004; Grafen
2007; Lehmann et al. 2007b; Taylor et al. 2007a); or with a
bottom–up approach, by showing that relatedness and
Hamilton’s rule can be recovered as emergent properties of
the ecological spatial dynamics (van Baalen & Rand 1998;
Lion & van Baalen 2007). We focus on the latter approach,
which we think is often more intuitive, and discuss briefly at
a later stage the limits and merits of each approach.

Invasion

When a mutant appears in a viscous population, stochastic
demographic processes will tend to lead to the emergence of a
cluster of mutants, with a local structure that is characterized
by spatial statistics (Fig. 2). For instance, in a lattice model,
one can use statistics such as aggregation (the local density
qM/M of mutants experienced by an average mutant) and local
saturation (the local density qo/Mof empty sites experienced by
an average mutant). The initial clustering of mutants implies
that the local density qM/M is much larger than the global
density pM. Therefore, Matsuda et al. (1992) have shown that,
when the mutants are rare, the local densities change faster
than the global densities, and the cluster reaches a stationary
local structure while the mutants are still rare (Fig. 2).

Let us consider individuals living on a regular network of
sites where each site can be either empty or occupied.
Reproduction is asexual and conditional to the availability of
empty sites in the neighbourhood of an individual. Then a
mutant will invade if its per-capita growth rate k (or any
relevant invasion criterion) is positive. Using correlation
equations, the invasion condition then reads (Matsuda et al.
1992; van Baalen & Rand 1998)

k ¼ bMqo=M " dM > 0; ð1Þ

where bM and dM are the birth and death rates of a
mutant and possibly depend on an individual’s environ-
ment. Here, qo/M gives the local density of empty sites
experienced by the mutants in the cluster, and is deter-
mined by the structure of the invading cluster. As we will

explain in more detail in the section on multilevel selec-
tion, this implies that we have defined fitness at the level
of the invading cluster.

Relatedness

The local density qM/M gives a measure of mutant clustering,
but is also the conditional probability that the recipient of an
altruistic act is a mutant, given that the donor is a mutant. As
shown by Day & Taylor (1998), this is a measure of
relatedness for a rare mutant (pM»0). When the mutant is
not rare, relatedness can be computed as a function of local
density qM/M and other spatial statistics (Lion & van Baalen
2007). This means that relatedness is not a fixed parameter,
but a spatio-temporal variable which depends on demo-
graphic and ecological parameters and variables, although in
practice the computation can be complex (for instance with
diploid genetics).

Hamilton’s rule

Let us now consider that individuals have a trait x that
represent the investment into altruism. Altruism increases
recipient’s survival and decreases donor’s fecundity. If a
mutant M with investment y appears in a selfish resident
population R with investment x ¼ 0, we know from eqn 1
that it will invade if k > 0. Under an assumption of weak
selection, altruism evolves if the selection gradient ¶k/¶y is
positive. Then, it can be shown (van Baalen & Rand 1998;
Le Galliard et al. 2003; Lion & van Baalen 2007) that the
condition for the spread of altruism takes the form

@B

@y
qM=M > "

@ðbMqo=M Þ
@y

ð2Þ

where qM/M and the partial derivatives are evaluated at
x ¼ y ¼ 0 (the mutant is only slightly altruistic, i.e. the
mutant is close to the resident). Here, B represents the
benefits of altruism, bM is the birth rate of a mutant and qo/M
is the local density of empty sites in the neighbourhood of a
mutant, so that bMqo/M is the reproductive output of a
mutant.

In words, altruism spreads if the marginal benefit of
altruism (¶B/¶y), weighted by relatedness qM/M, is greater
than the marginal cost of altruism [¶(bMqo/M)/¶y], i.e. how
much does a slight increase in altruism reduce the fecundity
of the donor. This means that we have recovered
Hamilton’s rule as an emergent property of the ecological
spatial dynamics.

In this version of Hamilton’s rule, relatedness and the
benefits and costs of altruism are not constant, but depend
on the demographic and ecological parameters. Moreover,
we see that altruism has a twofold cost: it has a direct
physiological cost (fecundity bM is decreased), and an
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds o� is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3. ⇥✏� �✓⇣⌘ ✓��⌘↵�⇣⌃✓⇥⇣↵ 
Although simulations of PCA models are excellent

for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4. ⌦⇣⇥ ��� ⇣ ⌥⇣�⇤↵⇧� �↵�⇧⌅✓⇥⇣↵ �
Following Metz et al. (1992) and Rand et al. (1994)

we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple di�erential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation su⌘ces. These di�erential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coe⌘cient of relatedness’’

F⇣�. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).
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• a parasite in absence 
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1. cause mild negative effects 

2. protect against other risks

Exx:
Plasmids that code for resistance
‘Probiotic’ intestinal flora
Cowpox that vaccinates against smallpox
Wolbachia protects against RNA virus



‘Dangerous liaisons’

Kostitzin, V. A. (1934). Symbiose, Parasitisme et Évolution 
(Étude Mathématique). Hermann et Cie, Paris.

selfish and common interests of interacting individuals.
How does one assess the common interest of a prey and
a predator engaged in a chase, for example? How does
this common interest depend on the context? It will be
advantageous for a host to tolerate a mild parasite only
if there are more dangerous parasites around. As an-
other example, it may pay for a prey to signal its
capacity for escape only if there are weaker individuals
around. Much of the incentive for cooperation might
depend on the intensity of within-trophic level competi-
tion, on the principle of ‘the enemy of my enemy is my
friend’.

In this article, we will carry out an ESS analysis of
the interactions between individuals of two populations.
The structure of this article is as follows. First we will
discuss how a range of interactions from outright com-
petitive to fully mutualistic (from competition for re-
sources to predator-prey and host-parasite interactions,
via client-provider to obligate symbiosis) can be ex-
pressed in terms of a common framework. Then we will
outline how fitness is defined in this framework (from
the invasion exponent of rare mutants, see Metz et al.
1992, Rand et al. 1994, Dieckmann and Law 1996,
Geritz et al. 1997), and how this concept can be used to
sharpen the definitions of antagonism and mutualism.
These fitness concepts can then be dissected to separate
selfish interests from the common good of the interac-
tants. Finally, we will analyse the conditions for align-
ment of interests and how this is related to private
interest and common good. We intersperse the develop-
ment of our argument with a number of examples to
discuss the salient points. To preserve the flow of the
argument most of the mathematical detail is referred to
appendices.

Interacting individuals
Models for populations of interacting individuals date
back as far as 1934 (Kostitzin 1934, Wolin 1985).
Kostitzin’s approach has resurfaced many times and in
many guises, but always in relation to questions about
conditions favouring association (Law and Dieckmann
1998, Yamamura 1993, 1996, Genkai-Kato and Yama-
mura 1999). Law and Dieckmann (1998) derive the
model from considerations of physiological interactions
between unicellular organisms; Yamamura and col-
leagues (Yamamura 1993, 1996, Genkai-Kato and Ya-
mamura 1999) used it to study the evolution of vertical
transmission in host-parasite interactions. Depending
on the parameters, the mathematical framework can
model other types of interactions as well, including
predator-prey and client-provider interactions such as
between plants and pollinators. So-called ‘marriage
models’, used to assess the rate of spread of sexually
transmitted diseases, are another example of this class
of models (Heesterbeek and Metz 1993).

The underlying principle of the framework is that
interactions between individuals (denoted x and y) take
place only when two individuals associate and form a
complex xy, see Fig. 1A. Such associations may last as
long as no partner dies, as in some host-parasite inter-
actions, but it may also be of short duration, as in the
case of predator-prey interactions, where a predator
pursuing a prey may be considered a temporary (or
virtual) predator-prey association.

The framework is given by three differential equa-
tions that govern the densities of free individuals and of
the complex,

d[x ]
dt

=Fx [x ]−![x ][y ]+Px [xy ]

d[y ]
dt

=Fy [y ]−![x ][y ]+Py [xy ]

d[xy ]
dt

=![x ][y ]−Mxy [xy ], (1)

where symbols enclosed in square brackets denote den-
sities of free individuals and of complexes, and ! the
rate of encounter of free x and y individuals. The other
symbols represent fitness components of free and
bound individuals (see also Fig. 1B). The terms Fx and
Fy denote the net rate of reproduction of free
individuals,

Fi="i−#i, (2)

where "i denotes the rate of reproduction of free indi-
viduals of species i and #i their mortality rate. Because
the contribution of the association is not included, we
will call the rates Fx and Fy the ‘free fitness component’
of free x and y, or x and y ’s ‘free fitness’ for short.

Once an x- and a y-individual have formed an
association, this association may persist for a certain
time, producing free x and y and possibly new xy
complexes. We can define the net mortality rates of
such complexes as

Fig. 1. Schematic representation of the processes affecting free
and bound individuals. (A) Individuals of species x and y can
combine to form interacting complexes xy (with encounter rate
!), which can then dissociate again (with rate $). (B) Fitness
components of free and bound individuals (for an explanation
of the symbols see text).
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Dangerous Liaisons

Whenever two individuals interact they will have 
aligned interests

• favouring (limited) cooperation

• survival, competitiveness
– e.g. plant-rhizosphere

• not individual reproduction
– a host should not help its parasites to spread

If there is relatedness, it helps!



Challenge

Better mathematical definition of

• Individual as unit of adaptation
– “who benefits”

• Common good (relative to selfish interest)

• Ecological conditions that affect balance







Unit of selection

• any structure that has 
differential dynamics

Unit of adaptation

• that what benefits from an 
adaptation

Definitions…

population

individual

within-individual

ecosystem



Unit of adaptation

Who benefit from adaptation:

• sometimes individuals

• often clearly associations

Whatever the case unit of adaptation:

• cooperative association

• balance of selfish interest and common good
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds o� is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3. ⇥✏� �✓⇣⌘ ✓��⌘↵�⇣⌃✓⇥⇣↵ 
Although simulations of PCA models are excellent

for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.

1.4. ⌦⇣⇥ ��� ⇣ ⌥⇣�⇤↵⇧� �↵�⇧⌅✓⇥⇣↵ �
Following Metz et al. (1992) and Rand et al. (1994)

we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple di�erential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation su⌘ces. These di�erential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coe⌘cient of relatedness’’

F⇣�. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).
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• How to deal with dynamic associations?

• Disentangling common good/private benefit



Questions & challenges

• How to deal with dynamic associations?

• Disentangling common good/private benefit

• What would favour increased integration?

• What governs eventual evolutionary transitions?



Evolution

Many mutualistic symbioses presumably evolved 
from parasitic interactions

• What governs the transition between parasitism 
and mutualism?
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‘‘nano-individuals’’. It has already been shown by
Goodnight (1992) that for altruists to invade a system
of so-called ‘‘budding’’ populations, the composition
of daughter populations must be a small random
sample from their parent population. If the daughter
populations are of exactly the same composition as
the parent population, the proportion of non-altruists
will ceaselessly increase until all populations are
dominated by non-altruists. However, if the number
of individuals that buds o� is small, there will be
variation due to sampling error so that some daughter
populations have a higher proportion of altruists. If
such populations produce more daughter popu-
lations, the global proportion of altruists will
eventually increase.

Thus, for the evolution of altruism there must be
discreteness and associated stochasticity (Goodnight,
1992). This means that we should analyse models that
are individual-based as well as spatial. Probabilistic
cellular automaton (PCA) models (which we will
describe in more detail) satisfy these criteria.
However, even when we assume haploid reproduction
(and thus ignore genetics) such PCA models are easy
to simulate but very hard to analyse.

1.3. ⇥✏� �✓⇣⌘ ✓��⌘↵�⇣⌃✓⇥⇣↵ 
Although simulations of PCA models are excellent

for developing intuition and formulating conjectures,
as models they are hard to analyse. Therefore, one
should consider more controllable models for which
there is more mathematical understanding and
which can be more directly connected with biological
data. The most promising of such models follow from
a correlation equation formalism (Matsuda et al.,
1992; Keeling & Rand, 1995; Keeling, 1995). Such
models are more robust to the assumptions under-
lying their derivation and these assumptions are more
open to experimental verification. The approach has
been applied to a range of systems, such as
host–parasite models (Satō et al., 1994; Keeling &
Rand, 1995; Keeling, 1995), vegetation dynamics
(Harada & Iwasa, 1994) and spatial games (Morris,
1997).

Matsuda et al.’s (1992) formalism, the so-called
pair approximation technique, models space im-
plicitly, by focusing on the interaction between
nearest neighbours. Matsuda et al. (1992) and
recently Harada et al. (1995) and Nakamaru et al.
(1997) have applied this technique to demonstrate
that altruists and non-altruists may coexist in a
viscous population, thus contradicting Taylor’s
(1992a, b) conclusion. In this article, we will elaborate
on these studies by focusing on the more general
problem of invasion of a rare population in viscous

system, and use the results to derive the invasion
conditions for altruists.
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Following Metz et al. (1992) and Rand et al. (1994)

we define the fitness of a rare mutant to be simply its
per capita rate of growth when rare. Therefore if the
mutant’s fitness is positive, the mutant increases in
number and can invade, if it is negative the mutant
will disappear.

Closely associated with the concept of fitness is that
of the ‘‘unit of selection’’. The definition of the unit
of selection as that entity ‘‘whose fitness is
maximized’’ (see, e.g. Dawkins, 1982) is dangerously
circular. However, our method of allows to link the
two concepts closely together. In fact, fitness and unit
of selection have to be calculated simultaneously.

In viscous systems, multiple di�erential equations
are necessary to describe the invasion dynamics of a
rare population, in contrast to well-mixed systems
where a single equation su⌘ces. These di�erential
equations can be concisely represented in matrix
form. Thus, the invasion exponent (fitness) will be
given by the dominant eigenvalue of a matrix. The
corresponding eigenvector describes the spatial
structure of the clusters that form when the rare
population invades (as in Fig. 1). Mathematically,
fitness and unit of selection follow from a set of
simultaneous equations.

We will use these results to determine under what
conditions altruists can invade a system dominated by
non-altruists (assuming haploid inheritance). It will
turn out that the invasion condition is very similar to
Hamilton’s Rule, but the ‘‘coe⌘cient of relatedness’’

F⇣�. 1. An example of a cluster of altruists (black) invading a
population of non-altruists (white) living on a triangular lattice
(n=6).
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