On the unit of adaptation in spatially structured host-parasite systems

Minus van Baalen

Equipe Mathématique Eco-Evolutive IBENS, Paris

IHÉS, Bures-sur-Yvette

- A genetic strain?
- A quasispecies?
- An infection?
- A cluster of infections?
- A clone?
- An individual?

What is 'a' parasite?

transmission

Trade-off

'Fitness is maximised'

OK, let's take that for granted.

But by whom or what ?

Evolutionary Theory in a Nutshell

ecosystem

biodiversity, nutrient cycles

population

competition, predation, epidemiology, social interactions

individual

birth, death, development, behaviour

within-individual

physiology, learning, infection, immune response

Levels of organisation

Fitness = Lifetime Reproductive Success

Life-history theory, epidemiology, even population genetics...

Evolutionary Theory

ecosystem

biodiversity, nutrient cycles

competition, predation, epidemiology, social interactions

individual

birth, death, development, behaviour

within-individual

physiology, infection, immune response

Levels of organisation

An anthill is an individual (almost)

A lichen is an association

Levels of organisation

Model for the origin of life

- interactions between simple molecules
- can persist where single species cannot
- susceptible to 'parasites'

The Hypercycle

Hypercycle

Exploited Hypercycle

Boerlijst & Hogeweg (1991) simulated a probabilistic cellular automaton to study spatial structure generated by hypercycles

8

********************** **************		
	and the second second second	att int it ftertetti
81141-111		te e territe that the state
s. terining sist.st.		

		and a second
b = 1600.		

Boerlijst & Hogeweg's (1991) results

- Tend to form rotating spirals
- Parasites swept outward
- Selection on rotation speed
 - favouring higher mortality

Spatial Hypercycles

Selection at the level of the spiral

Rotation speed selected trait

But:

- Rapidly rotating spirals 'fly apart'
- Evolution towards criticality
 - Rand, Keeling & Howard 1995

Spatial evolution

van Ballegooijen & Boerlijst 2004

Mutants create clusters Clusters unit of adaptation

unit of selection is a confusing term

Mathematical characterisation

- Correlation dynamics
 - Matsuda et al. (1992), Van Baalen & Rand (1998), Van Baalen (2000),
 Ferrière & Le Galliard (2001), Lion & van Baalen (2007)

$\frac{dp_{ss}}{dt} = 2[\phi b_s + \overline{\phi}(b_s + m_s)g_{stos}]p^{S_{ss}}$ $\frac{dp_{ss}}{dt} = 2[\phi b_s + \overline{\phi}(b_s + m_s)g_{stos}]p^{S_{ss}}$

nuous. In view of the preceding remarks, to first order we need only consider th

events individually on the value of f over a short time δt . Using the individual

ctation of the value of f at time $t + \delta t$ is

$$\mathbb{E}\left[f(\sigma^{t+\delta t})\right] = f(\sigma^{t}) + \sum_{e \in E^{\sigma}} \left(r^{\sigma}(e)\delta t + O(\delta t^{2})\right) \left(f(\sigma^{t}_{e}) - f(\sigma^{t})\right)$$
Morris (1997)

the limit $\delta t \to 0$ and using the assumption that $\mathbb{E}[f(\sigma)] \approx f(\sigma)$ in this limit, this equa

$$\dot{f} \equiv \frac{df}{dt}(\sigma) = \sum_{e \in E} r^{\sigma}(e)\delta f_e$$

 $= f(\sigma_e) - f(\sigma)$, the change in f caused by event e.

Bookkeeping

e main building block of the chapter and forms the basis of the dynamics for all a

death:Image: Constraint of the second se

growth, infection, long-range dispersal, cooperation, spite, ...

- Empty sites (*o*), healthy (*S*) and infected (*I*) individuals
- Full correlation dynamics model tracks oo, So, SS, Io, II, and SI pairs
- Depends on 'higher moments'
- SI pairs give insight in contact rate
- Not equal to product of *S* and *I* !

Contact epidemics

- Empty sites *o*, altruistic *A* and selfish *S* individuals
- Full correlation dynamics model tracks oo, So, SS, Ao, AS, and AA pairs

$$\frac{dt}{dt} = (b_{S} + \sigma e^{iS})^{2} + \overline{\phi}(b_{A} + m_{A})q_{A|oS} + d_{s} \\
- [\phi b_{S} + \overline{\phi}(b_{S} + m_{S})q_{S|oS} + \overline{\phi}(b_{A} + m_{A})q_{A|oS} + d_{s} \\
- \overline{\phi}m_{S}q_{o|SS}]p_{So} \\
+ [d_{S} + \overline{\phi}m_{S}q_{o|SS}]p_{SS} \\
+ [d_{A} + \overline{\phi}m_{A}q_{o|AS}]p_{SA} \\
\frac{dp_{SS}}{dt} = 2[\phi b_{S} + \overline{\phi}(b_{S} + m_{S})q_{S|oS}]p_{So} \\
- 2[d_{S} + m_{s}\overline{\phi}q_{o|SS}]p_{SS} \\
\frac{dp_{Ao}}{dt} = (b_{A} + m_{A})\overline{\phi}q_{A|oo}p_{oo} \quad (A.1) \\
- [\phi b_{A} + \overline{\phi}(b_{A} + m_{A})q_{A|oA} + \overline{\phi}(b_{S} + m_{S})q_{S|oA} + d_{A} \\
+ \overline{\phi}m_{A}q_{o|Ao}]p_{Ao} \\
+ [d_{A} + \overline{\phi}m_{A}q_{o|AA}]p_{AA} \quad \text{Van Baalen & Rand (1998)} \\
+ [d_{S} + \overline{\phi}m_{S}q_{o|SA}]p_{SA}$$

- Empty sites *o*, altruistic *A* and selfish *S* individuals
- Full correlation dynamics model tracks oo, So, SS, Ao, AS, and AA pairs
- Resident system: (*oo*, *So*, *SS*)
- Mutant invader: (*Ao*, *AS*, *AA*)

$$\mathbf{p}_A = \begin{bmatrix} p_{Ao} \\ p_{AS} \\ p_{AA} \end{bmatrix}$$

Adaptive Dynamics

$$\mathbf{p}_A = \begin{pmatrix} p_{Ao} \\ p_{AS} \\ p_{AA} \end{pmatrix}$$

$$\frac{\mathrm{d}\mathbf{p}_A}{\mathrm{d}t} = \mathbf{M}(\mathbf{q}_A)\mathbf{p}_A$$

Dynamics of mutant given by sets of equations

- Matrix formalism
- Fitness: dominant Lyapunov exponent
- Unit of selection: corresponding eigenvector

Invasion of altruist mutant

Characteristic cluster

Traits of the cluster determine invasion success

Close link with Hamilton's inclusive fitness

Invasion condition

Coefficient of relatedness r ecological variable

Viscous populations

Cluster functions as unit of adaptation

Individuals balance selfish interests with common good

Viscous populations

Individuals but associations of more-or-less independent smaller entities

- genes
- haploid
- organelles
- cells
- individuals
- populations

chromosomes diploid cells multicellular organisms symbioses 'superindividuals'

Individuals are not really

A plasmid is

- a parasite in absence of antibiotics
- a mutualist in its presence

Parasites that

- I. cause mild negative effects
- 2. protect against other risks

Exx:

Plasmids that code for resistance 'Probiotic' intestinal flora Cowpox that vaccinates against smallpox Wolbachia protects against RNA virus

Kostitzin, V. A. (1934). Symbiose, Parasitisme et Évolution (Étude Mathématique). Hermann et Cie, Paris.

'Dangerous liaisons'

Common good \longrightarrow

Private interest vs Common good

Whenever two individuals interact they will have aligned interests

- favouring (limited) cooperation
- survival, competitiveness
 - e.g. plant-rhizosphere
- not individual reproduction
 - a host should not help its parasites to spread
- If there is relatedness, it helps!

Dangerous Liaisons

Better mathematical definition of

- Individual as unit of adaptation
 "who benefits"
- Common good (relative to selfish interest)
- Ecological conditions that affect balance

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Unit of selection

 any structure that has differential dynamics

Unit of adaptation

 that what benefits from an adaptation

Definitions...

Who benefit from adaptation:

- sometimes individuals
- often clearly associations

Whatever the case unit of adaptation:

- cooperative association
- balance of selfish interest and common good

Unit of adaptation

Counterintuitive outcomes

- Tend to form rotating spirals
- Selection on rotation speed
 - favouring higher mortality
- Infective disease could help the spiral to compete

Spatial Hypercycles

- How to deal with dynamic associations?
- Disentangling common good/private benefit

Questions & challenges

- How to deal with dynamic associations?
- Disentangling common good/private benefit
- What would favour increased integration?
- What governs eventual evolutionary transitions?

Questions & challenges

Many mutualistic symbioses presumably evolved from parasitic interactions

• What governs the transition between parasitism and mutualism?

On every level there is potential for conflict between private interest and common good :

- genes
 selfish DNA
- chromosomes
- organelles
- cells
- symbionts
- mutualists
- local populations

selfish DNA meiotic drive 'mitochondrial wars' cancer disease cheaters nepotism

