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Motivation
Historical epidemics were wave-like / spatial:

(picture from WHO)



Motivation
Modern epidemics are spatially heterogeneous but
transmission rates are not a simple function of Euclidian
distance – with all that implies for control.

(picture from WHO)



Approximations in Models
Approximation of infection process in SEIR models.



Approximations in Models
Approximation of infection process in SEIR models.



Norovirus Shedding data

†

†
Teunis 2014, http://dx.doi.org/10.1017/S095026881400274X



Contact Hetrogeneity

I consider individuals i, j, . . . ∈ {1, . . . ,N};
I λij is the infection rate between i and j

I when i is infectious and j is susceptible.



Contact Hetrogeneity

I consider individuals i, j, . . . ∈ {1, . . . ,N};
I λij is the infection rate between i and j

I when i is infectious and j is susceptible.
I λij = d(i, j)ρ(i|xi)ψ(j|xj)



Networks: Definitions

I consider individuals i, j, . . . ∈ {1, . . . ,N}; let Gij = 1 if i and j
make contact capable of spreading disease.

I G = (Gij) is the adjacency matrix of a network / graph
G ∈ G, where G is the set of all undirected graphs with N
nodes.

I ki :=
∑

j Gij is the degree of node i
I Individual i is in disease state Xi(t), a discrete random

variable; for e.g. network SIR dynamics we have:

P[Xi(t + δ) = I|Xi(t) = S] =
∑

j

τGijI{Xj(t)=I}δ + o(δ) ;

P[Xi(t + δ) = R|Xi(t) = I] = γδ + o(δ) .
(1)



Inference on Network: from observed epidemic



Networks: Models

I Known or random
I Maths or simulation

The degree distribution P(k) the probability a randomly chosen
node has degree k is the major factor affecting epidemics on
graphs.

I Erdös Renyi
I Configuration model
I Small world



Graphs with same degree distribution



Graph - Automorphisms

atlas number 572 573 574 575 576
automorphisms 1 2 2 2 4

number isomorphic 5040 2520 2520 2520 1260
clustering 0.6052 0.6225 0.5762 0.5905 0.5164
transitivity .2 0 .2 .4 .6

number 577 578 579 580 581 582
auto. 4 4 4 6 6 144

isomor. 1260 1260 1260 840 840 35
cluster 0.5701 0.6082 0.6082 0.5861 0.5861 0.2286
transit .4 0 .2 .2 0 1.

all graphs with 7 nodes; 3 nodes of degree 2 and 4 nodes
degree 3



Rewiring algorithm
swap pairs of edges



Networks: Heterogeneity
Measurement of direct contact patterns shows complex local
structure and significant heterogeneity in degree†.

†
L. Danon, T. House, J. M. Read and M. J. Keeling, “Social encounter networks:

collective properties and disease transmission," Journal of the Royal Society Interface. 9:76 (2012) 2826-2833.



Networks: Clustering
Measurement also shows significant transitivity / clustering,
generated more by context than space†.

†
L. Danon, T. House, J. M. Read and M. J. Keeling, “Social encounter networks:

collective properties and disease transmission," Journal of the Royal Society Interface. 9:76 (2012) 2826-2833.



Networks: Heterogeneity and Clustering
Suppose we want to generate full networks with given
heterogeneity and clustering; a natural approach is to promote
the Gij to random variables. We want to specify:

M[G] :=
∑

i,j

Gij = N〈k〉 (total links),

L[G] :=
∑

i,j,k 6=j

GijGik = N〈k(k − 1)〉 (lines),

T[G] :=
∑
i,j,k

GijGjkGki = (triangles).

(2)

Note, these are not independent:



Networks: Measures

We will define a probability measure using a Hamiltonian
framework so that the probability given to G ∈ G is

π(G|θ) = e−H(G;θ)

Zθ
, where Zθ =

∑
G∈G

e−H(G;θ) . (3)

We will also write π̃ for the ensemble probability of a network
taking a value of properties F[G] = (Fa[G])

π̃(f |θ) =
∑
G∈G

π(G|θ)
∏

a

I{fa=Fa[G]} . (4)

It is easy to sample according to π in a Monte Carlo scheme,
but hard to sample according to π̃ for combinatorial reasons.



Networks: A heterogeneous clustered measure

The following measure works if parameters are tuned
appropriately:†

H(G;θ,β) = βm (M[G]− θmN(N − 1))2

+βl
(
L[G]−M[G]((θl − 1) + N−1M[G])

)2
+βt (T[G]− θtL[G])2 .

490 495 500 505
0

0.1

0.2

0.3

0.4

0.5

Number of links, M

W
ei

gh
t

2000 2050 2100 2150
0

0.2

0.4

0.6

0.8

Number of lines, L

W
ei

gh
t

600 610 620 630 640
0

0.1

0.2

0.3

0.4

0.5

Number of triangles, T

W
ei

gh
t

(Red dashed line – target; Black histograms – simulations)

†
T. House, “Heterogeneous clustered random graphs,” Europhysics Letters 105 (2014) 68006.



Networks: A heterogeneous clustered measure

Removing just one term causes failure:

H(G;θ,β) = βm (M[G]− θmN(N − 1))2

((((((((((((((((((((hhhhhhhhhhhhhhhhhhhh
+βl

(
L[G]−M[G]((θl − 1) + N−1M[G])

)2
+ βt (T[G]− θtL[G])2 .
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ERGM and Phase transitions in graphs

The theory explains a host of difficulties encountered by applied
workers: many distinct models have essentially the same MLE,
rendering the problems “practically” ill-posed. We give the first
rigorous proofs of “degeneracy” observed in these models.
showing that for many models, the extra sufficient statistics are
useless: most realizations look like the results of a simple
Erdős-Rényi model. We also find classes of models where the
limiting graphs differ from Erdős-Rényi graphs. A limitation... it
works only for dense graphs. †

†Chatterjee and Diaconis, 2011, Annals of Statistics



Motivation for bipartite models

I consider individuals i, j, . . . ∈ {1, . . . ,N};
I λij is the infection rate between i and j

I when i is infectious and j is susceptible.
I λij = d(i, j)ρ(i|xi)ψ(j|xj)

I Ebola know the village and household level matter
I 3 level schools, workplace, household



Example bipartite graph

A bipartite graph G = (U,V,E) is two disjoint sets U and V
comprising the nodes or vertices†, and a set of edges E where
each edge is a pair of nodes (u, v), u ∈ U, v ∈ V. In general the
two sets U and V can be of the same type so that all vertices in
U and V are in some larger set of vertices, here U and V are
distinct with U representing individuals who may become
infected and V an abstract set of possible contacts, which may
include physical premises such as schools, houses or work
places and can include a temporal aspect.
A convenient representation is the adjacency matrix
A = (aij, i ∈ U, j ∈ V) where aij = 1 if and only if (i, j) ∈ E and
aij = 0 otherwise.

†the terms are used interchangeably



Example bipartite graph



Bipartite representation of a household model

λG λH λH λH λH

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

other standard models can also be represented



Random bipartite graphs

I Random Intersection Graphs
I Theoretical results but not realistic

I Hypergraphs
I Theoretical results

I Indian Buffet Process
I Realistic but theory challenging



Example degree distributions of IBP

Distribution of marginal sums for an example IBP, N = 105 , α = 4,
β = 25.
The left hand plot is a standard histogram, the right hand a count of
counts.



Example epidemics on Hypergraphs



Conclusions

I Bipartite Graphs are a useful model
I Lots of interesting problems in distributions of graphs and

hypergraphs
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